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Abstract
We study the effects of a perpendicular magnetic field on the transport properties
of carbon nanotubes. For values of the magnetic length smaller than the
curvature radius, the system displays well-defined Landau levels and an integer
quantum Hall effect. The localized Gaussian Landau states develop in the
central region of the nanotube surface, where the component of the magnetic
field is maximum. Conversely, chiral currents flow at the flanks of the nanotube,
producing a quantization of the Hall conductivity by even multiples of 2e2/h.
Remarkably, it differs from the quantization rule by odd multiples of 2e2/h
recently found in planar graphene. Finally, the effects of the electron–electron
interaction in the quantum Hall regime are considered. It is shown that the
localization of chiral currents on opposite sides of the system reflects a strong
suppression of back-scattering, enhancing the tunnelling density of states.

1. Introduction

The recent observation of the integer quantum Hall effect in planar graphene [1, 2] has attracted
much attention on the effects of a perpendicular magnetic field in two-dimensional (2D) carbon
compounds. In these systems the sp2 bonding produces the arrangement of the carbon atoms
in a honeycomb lattice, giving rise to electron quasiparticles with conical dispersion around
discrete Fermi points. This seems to be at the origin of remarkable features of the resistivity as
well as of the Hall conductivity, which in planar graphene is quantized according to [3, 4]

σxy = 2
e2

h
(2n + 1). (1)

Carbon nanotubes can also be considered as the result of wrapping up a graphene sheet,
leading to quasi-one-dimensional systems where the transport seems to be ballistic under
certain conditions [5], as a consequence of the suppression of the scattering between different
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low-energy subbands [6, 7]. The low-energy electronic states of both metallic carbon nanotubes
and graphene sheets are characterized by linear dispersion around the Fermi points, with the
result that they are governed by a two-component massless Dirac equation [8–10].

In this paper we investigate the effects of a transverse magnetic field on the transport
properties of carbon nanotubes by looking at the possibility of forming Landau levels and edge
states in such closed geometry. While the effect of a magnetic field parallel to the tube axis
is well known, the transport properties of carbon nanotubes under a transverse magnetic field
are less well understood [11]. We will see that carbon nanotubes of sufficiently large radius
may also have a quantum Hall regime, with a quantized Hall conductivity σxy . We will find
that the different topology of the carbon nanotubes with respect to planar graphene leads to a
quantization in even steps of the quantity 2e2/h.

For the Hall regime to arise, the radius R of the nanotubes has to be larger than the magnetic
length � = √

h̄c/eB, since this is the typical size of the localized states in Landau levels.
Suitable conditions can be already found in thick multi-walled nanotubes for magnetic fields
B � 1 T, which correspond to magnetic lengths � � 30 nm. We will see that, for � < R,
the eigenstates of the carbon nanotube organize into incipient Landau subbands, with a highly
degenerated level at zero energy. The branches with linear dispersion correspond to states
localized at the flanks of the nanotube, carrying quantized currents which are responsible for
the conductivity along the longitudinal dimension of the nanotube.

The plan of the paper is the following. In section 2 we introduce a tight-binding model
suitable for zig-zag carbon nanotubes in the presence of a transverse magnetic field B . On this
basis we derive a simple field theory of Dirac spinors coupled to a gauge field. In section 3
we present numerical results for the band structure by varying the strength of the magnetic
field B . We show that Landau levels develop when the magnetic length is comparable to the
radius and study the spatial distribution of the corresponding eigenfunctions. The quantization
rule for the Hall conductivity is derived in section 4, where a comparison to the case of planar
graphene is also carried out. In the section 5 we introduce the effects of the Coulomb interaction
between electrons, showing that the spatial localization of the electron modes induces a strong
enhancement of the tunnelling density of states. Finally, the main conclusions are drawn in
section 6.

2. Tight-binding model in the presence of a perpendicular magnetic field

In order to establish a relation with the quantum Hall effect in graphene, it is convenient to set
up an approach focusing on the features of the states over distances much larger than the C–C
distance a. The low-energy band structure can be obtained in graphene by taking a continuum
limit in which the momenta are much smaller than the inverse lattice spacing 1/a [8–10]. In
the case of carbon nanotubes under a magnetic field, a sensible continuum limit requires also
that � � a, so that lattice effects can be disregarded.

We illustrate the long-wavelength limit in the case of zig-zag nanotubes, having in mind
that different chiralities can be studied in a quite similar way. The tight-binding model for
zig-zag nanotubes can be set up by considering a unit cell with length 3a, that contains four
transverse arrays of carbon atoms at different longitudinal positions x j , j = 1, . . . 4. We
introduce the Fourier transform of the electron operator �(x j, n) with respect to the position
of the carbon atoms n = 1, 2, . . . N in each transverse section (see figure 1)

�(x j , n) ∼
∑

p

ei2πnp/N�p(l; j) (2)

where l ∈ Z runs over the different cells. The index p labels the different 1D subbands,
p = 0,±1, . . . ± (N − 1)/2 (or N/2) for the case of odd (even) N .

2



J. Phys.: Condens. Matter 19 (2007) 395017 S Bellucci et al

4

3 1

2

a

l l+1l-1

n

n-1

n+1

4

3 1

2

a

l l+1l-1

n

n-1

n+1

Figure 1. Illustration of the honeycomb lattice for zig-zag nanotubes.

The magnetic field is introduced with the usual prescription of correcting the transfer
integral by appropriate phase factors

exp

(
i

e

h̄c

∫ r′

r
A · dl

)
(3)

depending on the vector potential A between nearest-neighbour sites r and r′. In our case the
vector potential has been chosen with the appropriate functional dependence at the nanotube
surface, so that the phase factor becomes a(e/h̄c)B R sin(2πn/N) [11]. In the continuum limit
characterized by (e/h̄c)B Ra � 1, we may deal with the linear approximation in magnetic
field strength, obtaining a tight-binding Hamiltonian

Htb = −t

(∑

p,l

z pd+
p (l; 1)dp(l; 2) +

∑

p,l

d+
p (l; 3)dp(l; 1)

+
∑

p,l

z∗
pd+

p (l; 4)dp(l; 3) +
∑

p,l

d+
p (l; 2)dp(l + 1; 4)

∓ 1

4

eB Ra

h̄c

∑

p,l

z pd+
p (l; 1)dp±1(l; 2) ∓ 1

2

eB Ra

h̄c

∑

p,l

d+
p (l; 3)dp±1(l; 1)

∓ 1

4

eB Ra

h̄c

∑

p,l

z∗
pd+

p (l; 4)dp±1(l; 3)

∓ 1

2

eB Ra

h̄c

∑

p,l

d+
p (l; 2)dp±1(l + 1; 4)

)
+ h.c. (4)

where d(+)
p (l; j) is the annihilation (creation) of an electron in subband p on cell l and site j , t

is the hopping integral and z p = 1 + exp(i2πp/N).
In the absence of magnetic field, each subband is obtained from the diagonalization of a

4×4 matrix describing the unit cell and reflecting the translational invariance in the longitudinal
direction:

Hp,p′
∣∣

B=0
= δp,p′ t

⎛
⎜⎜⎝

0 z∗
p 1 0

z p 0 0 ei3ka

1 0 0 z∗
p

0 e−i3ka z p 0

⎞
⎟⎟⎠ (5)

where k denotes the longitudinal momentum. This leads in general to massive subbands with
parabolic dispersion, with a gap 2�p = 2t|1 − 2 cos(πp/N)|. We note that for p = ±N/3

3



J. Phys.: Condens. Matter 19 (2007) 395017 S Bellucci et al

Figure 2. Band structure of a zig-zag nanotube in a transverse magnetic field, for a radius
R ≈ 20 nm and field strength B = 0 T (first panel); B = 5 T (second panel); B = 10 T (third
panel); B = 20 T (fourth panel). B = 20 T corresponds to aR/�2 ≈ 0.1 and R/� ≈ 3.5. Energy is

in units of t and momentum is in units of Å
−1

.

the gap vanishes and we get massless subbands crossing each other at zero energy (see figure 2
first panel, for an illustration). The dispersive branches can be decoupled from the high-energy
branches that appear near the top of the spectrum. It turns out that the low-energy dispersion
corresponds to a reduced two-component spinor described by the 2 × 2 Hamiltonian

Hp,p′
∣∣

B=0
= δp,p′

(
vFh̄k �p

�p −vFh̄k

)
(6)

where the Fermi velocity is vF = 3ta/2h̄. The 2×2 structure of the Schrödinger equation gives
rise to a two-component spinor (�p,R,�p,L). It appears that the two components of the spinor
�p,R,�p,L correspond respectively to right and left modes (note the corresponding opposite
Fermi velocities in equation (6)), which are mixed by the massive (off-diagonal) term of the
Hamiltonian.

The magnetic field introduces an interaction which is nondiagonal in the space of the
different subbands, and that can be represented by the operator

�Hp,p′ = δp′,p+1t
eB Ra

2h̄c

⎛

⎜⎜⎝

0 −z p/2 1 0
z∗

p+1/2 0 0 −ei3ka

−1 0 0 z p+1/2
0 e−i3ka −z∗

p/2 0

⎞

⎟⎟⎠

+ δp′,p−1t
eB Ra

2h̄c

⎛

⎜⎜⎝

0 z p/2 1 0
−z∗

p−1/2 0 0 ei3ka

−1 0 0 −z p−1/2
0 −e−i3ka z∗

p/2 0

⎞

⎟⎟⎠ . (7)

By projecting again onto the 2D low-energy space, �Hp,p′ becomes

�Hp,p′ = δp′,p±1

( ±ivF(e/c)B R/2 0
0 ∓ivF(e/c)B R/2

)
. (8)
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The Hamiltonian can be more easily expressed when acting on the two-component Dirac
spinor

�(k, θ) ∼
∑

p

eiθp�p(k) (9)

depending on the angular variable θ around the tubule. In this basis there are in fact two
different sectors describing states with opposite angular momentum around the nanotube. The
Hamiltonian is in either case

H =
(

vFh̄k + vF
eB R

c sin(θ) i(h̄vF/a)∂θ

i(h̄vF/a)∂θ −vFh̄k − vF
eB R

c sin(θ)

)
(10)

where the periodic modulation matches with the orientation of a magnetic field normal to the
nanotube surface at θ = 0. Expression (10) actually corresponds to the Dirac Hamiltonian with
the usual prescription for the coupling to the vector potential.

We have checked numerically that, as expected, the eigenstates of (10) provide a good
approximation to the low-energy band structure of the carbon nanotubes for a R/�2 � 1.

In the next section we will see that, for intermediate values of the magnetic length � ∼ R,
the spectrum starts to develop a flat Landau level at zero energy, in similar fashion as in the
case of graphene.

3. Landau and current-carrying states

We have diagonalized the Hamiltonian (10) numerically for a nanotube with radius R ≈ 20 nm
and magnetic field B varying between 0 and 20 T. The corresponding band structure is shown in
figure 2 (see also [12]). The plot corresponds to a zig-zag nanotube, but it can be shown that the
shape of the band structure remains the same for other geometries, with the two valleys at zero
energy (that appear superposed in figure 2) expanding in general around the two Fermi points
of the system at B = 0. We see that flat Landau levels start developing already at B = 10 T
(figure 2, third panel). For each momentum around k = 0 there is a four-fold degeneracy in
the flat level. This extends into dispersive branches with particle- and hole-like character, at
each side in momentum space. We have checked that for large B (B = 20 T, fourth panel) the
energy levels at k = 0 follow the quantization rule εn ∝ √

n, which is peculiar to graphene [13].
The existence of a zero-energy level at k = 0 has been also shown to be a robust property of
carbon nanotubes in a transverse magnetic field [14]. The point that we want to stress here
is our observation that the levels at k = 0 are four-fold degenerate, including the zero-energy
level, for any kind of nanotube geometry. As we will see, this bears a direct relation to the
quantization of the Hall conductivity in even multiples of 2e2/h.

A remarkable physical insight is obtained by looking at the eigenfunctions of the
Hamiltonian (10) when the Landau levels have already developed. In figure 3 we show the
spatial distribution of the lowest Landau level (with finite although very small positive energy)
for B = 20 T. We see that each eigenfunction of (10) is in general localized around a certain
value of the angular variable θ . The zero-energy states at k = 0, for instance, have Gaussian
wavefunctions localized at θ = 0 or π , where the normal component of the magnetic field is
maximum. Moreover (see figure 3 central panels), the left-component �L of the wavefunction
exactly compensates the right-component �R. As a consequence we expect that such states
around k = 0 do not carry any net current. This issue will be studied in more detail in the next
section.

For positive [negative] longitudinal momentum, the zero-energy states have two Gaussian
structures peaked in the intervals (π, 3π/2) and (3π/2, 2π) [(0, π/2) and (π/2, 3π/2)]. Quite
interestingly (see figure 3 top and bottom panels), the states in the dispersive branches have
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Figure 3. Angular distribution of the eigenfunctions in the lowest Landau level of a zig-zag
nanotube in a transverse magnetic field, for a radius R ≈ 20 nm and field strength B = 20 T.
In the left (right) panels we plot |�L|2 (|�R|2) as a function of the angular variable θ , for different
values of the longitudinal momentum k. From top to bottom we have k = −0.15, 0, 0.15 (in units

of Å
−1

). We note that k ± 0.15 has been chosen in such a way that the corresponding eigenmodes
are in the full linear regime of figure 2, fourth panel. The interpolation between the figures in three
panels is smooth for intermediate values of k.

Gaussian wavefunctions (with a width that is proportional to
√

�) centred about π/2 (for a left
branch) or 3π/2 (for a right branch). In these regions the normal component of the magnetic
field is vanishing, and therefore we expect the electrons to behave as if they were free. Here the
role of the magnetic field is to separate left-moving and right-moving states at opposite sides
of the tube. Indeed for these states there is a large mismatch between �L and �R, and they are
expected to carry nonvanishing chiral currents flowing at the flanks of the nanotube.

The localization of the states in the dispersive branches at the flanks of the tubule suggests
that, despite having no boundary, the carbon nanotube may support edge excitations in a similar
fashion as in systems with planar geometry. To check this fact, one may compute the current
flowing in the longitudinal direction for the different states.

4. Quantization rule for the Hall conductivity

In this section we show that the current carried in the longitudinal direction by the states in the
outer dispersive branches is quantized. For Dirac spinors, the definition of the current follows
from the continuity equation

∂t (�
+
R �R + �+

L �L) = vF∂x(�
+
R �R − �+

L �L) (11)

where �L and �R correspond to the same basis used to write the Dirac Hamiltonian (10).
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Figure 4. Plot of the integral of the current j over the angular variable θ as a function of the
longitudinal momentum k (solid line), for states in the lowest Landau subband shown in figure 2.
The energy dispersion of the subband is also shown (dashed line). Energy is in units of t and

momentum is in units of Å
−1

.

The result of computing the integral over θ of the current j = �+
R �R − �+

L �L for
the lowest energy subband is represented in figure 4. It turns out that, in general, the states
corresponding to the flat part of the Landau level (displayed in figure 4 by the dashed line) do
not carry any current in the longitudinal direction, while the states in the dispersive branches
saturate quickly the unit of current as the dispersion approaches a constant slope.

The quantization of the current for the states in the dispersive branches opens the
possibility to observe the quantization of the Hall conductivity in thick carbon nanotubes. In
general, the quantization of the current is more accurate for smaller curvature of the dispersive
branches. It happens moreover that, when the Fermi level crosses one of the bumps with
parabolic dispersion shown in figure 2, the two contributions to the current from the respective
Fermi points go in the opposite direction and tend to cancel each other. Envisaging an
experiment where a potential difference is applied between the two flanks of a thick nanotube,
we obtain that the current in the longitudinal direction is given approximately by the excess
(or deficiency) of filled states in the right dispersive branches, with respect to those in the left
dispersive branches. Making the equivalent of the arguments applied for planar geometries [15],
we conclude that the Hall conductivity σxy must follow an approximate quantization rule, with
a prefactor given by the spin degeneracy and the doubling of the subbands shown in figure 2:

σxy ≈ 4
e2

h
n. (12)

In contrast to what happens in the case of graphene, we observe that the Hall conductivity
is quantized in even steps of 2e2/h. It can be shown that this feature is a consequence of the
vanishing net flux traversing the nanotube surface [16].

5. Effects of Coulomb interaction

The existence of extended states along the flanks of the nanotube also gives the insight to
understand the effects of the electron–electron interaction in the presence of a magnetic field.
At B = 0, the transport properties are dictated by the so-called Luttinger liquid behaviour,
which is a reflection of the repulsive interaction in the nanotubes [6, 7]. When the magnetic
field is switched on, however, the Coulomb interaction renormalizes, in a different manner, the
Fermi velocity as well as the compressibility for the extended states near the Fermi level.

7
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Figure 5. Plot of the Luttinger liquid parameter K (solid line) and of the critical exponent α (dashed
line) as a function of R/2π�. Here the radius is fixed at R ≈ 20 nm and B is ranging between 0 T
(� = ∞) and 20 T (� ≈ 6 nm).

Let us focus on the case where the Fermi level is right above (or below) the plateau at
zero energy. The Fermi velocity is renormalized by the so-called g4 coupling, given by the
matrix element of the Coulomb interaction for electrons scattering near the same Fermi point
(i.e. having the same chirality) [17]. This quantity can be computed using the eigenfunctions of
the Dirac Hamiltonian (10). At the flanks of the nanotube, their wavefunctions have Gaussian
shape, with a width that is proportional to

√
�. Thus, the coupling g4 has larger values for

increasing magnetic field, as a consequence of the strong Coulomb repulsion between the
currents localized at a given flank of the nanotube. The matrix element computed instead
for electrons near opposite Fermi points (i.e. having opposite chiralities) gives the so-called g2

coupling. The weak Coulomb repulsion between currents localized at antipodal points in the
nanotube leads to relatively small values of g2. This enters in the expression of the Luttinger
liquid parameter

K =
√

vF + 2(g4 − g2)/π h̄

vF + 2(g4 + g2)/π h̄
(13)

which governs the low-energy transport properties [17]. The variation of K upon switching
on the magnetic field, represented in figure 5, translates into a sharp decrease of the exponent
α for the power-law behaviour of the tunnelling density of states, according to the relation
α = (K + 1/K − 2)/8 [6, 7]. The behaviour of the exponent, plotted in figure 5, provides
a signature of the suppression of the electronic correlations in the presence of a transverse
magnetic field [18], which seems to have been observed in the measurements of α in multi-
walled nanotubes [19]. In the experiment reported in [19], it has actually been shown that a
perpendicular magnetic field B = 4 T (with R/2π� = 0.25) is able to induce a reduction of
the exponent α from 0.34 to 0.11, which is consistent with the reduction by a factor of ≈3
displayed in figure 5 for the parameters corresponding to the experiment.

6. Conclusions

To summarize, we have shown that, for thick carbon nanotubes in a transverse magnetic field,
the transport properties are governed by the states localized at the flanks of the nanotube,
which carry quantized currents in the longitudinal direction. Conversely, localized Landau
states develop in the central region of the tube, where the component of the magnetic field

8
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perpendicular to the surface is maximum. We observe at this point that the coexistence of
a magnetic field and a Hall voltage, VH, may lead to an interesting realization of the setup
discussed in [20], where an electric field (perpendicular to B) is also applied to the system.
The Hall voltage gives rise to an electric field at the top and bottom regions of the nanotube,
E ≈ VH/R. It has been shown that the Hall system with electric field undergoes a phase
transition, similar to dielectric breakdown, for E/[(vF/c)B] = 1 [20]. This corresponds to a
current flowing along the nanotube,

Ic = σxy V c
H ∼ 4nevF R/ l2.

The transition at higher bias currents leads to the suppression of the gaps between Landau
levels, and it seems likely that, beyond this transition, the Hall conductance will no longer be
quantized.

In any event, for nanotubes with a radius R ≈ 20 nm in a magnetic field of ≈20 T, the
band structure already shows a clear pattern of Landau levels. This opens the possibility of
observing the quantization of the Hall conductivity in multi-walled nanotubes, where typically
only the outermost shell is contacted by electrodes in transport experiments.

The presence of the plateaus in the Hall voltage should be fairly insensitive to the presence
of moderate disorder in the nanotube samples, as long as the effect rests on the existence of
chiral currents at opposite flanks of a nanotube. The overlap between states with currents
flowing in opposite directions is exponentially small, so the chiral currents cannot suffer
significant backscattering from impurities or lattice defects. It is only at the electrodes, where
the chiral currents meet, that backscattering may appear. As is usually done in the context of the
Hall effect in mesoscopic wires, this may be accounted for by means of a suitable transmission
coefficient, that would reflect as an additional factor in the relation between the longitudinal
current and the Hall voltage [21].

Finally, we remark that the absence of significant backscattering interactions must lead
to good perspectives to measure the properties of a robust chiral liquid at the flanks of the
nanotube, which could be accomplished by means of scanning tunnelling spectroscopy.
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